庞加莱猜想可能被证明了

法国人庞加莱(Henri Poincare)被称为“最后一位数学全才”,在他留下的巨大科学遗产中,有一个属于代数拓扑学中带有基本意义的命题,这就是困扰了数学家整整一个世纪的“庞加莱猜想”。

庞加莱是在1904年发表的一组论文中提出这一猜想的:“单连通的三维闭流形同胚于三维球面。”它后来被推广为:“任何与n维球面同伦的n维闭流形必定同胚于n维球面。”我们不妨借助二维的例子做一个粗浅的比喻:一个无孔的橡胶膜相当于拓扑学中的二维闭曲面,而一个吹涨的气球则可以视为二维球面,二者之间的点存在着一一对应的关系,同时橡胶膜上相邻的点仍是吹涨气球上相邻的点,反之亦然。有趣的是,这一猜想的高维推论已于上个世纪60年代和80年代分别得到解决,唯独三维的情况仍然像只拦路虎一样趴在那里,向世界上最优秀的拓扑学家发出挑战。

代数拓扑是当今数学最具活力的领域之一,对“庞加莱猜想”的证明及其带来的后果将会加深数学家对流形性质的认识,甚至会对人们用数学语言描述宇宙空间产生影响,而这一猜想的陈述又是那样的简洁和明朗,因此设在波士顿的克莱数学研究所于2000年将它列为“七大千年难题”之一,并悬赏100万美金奖励这一猜想的证明者。也正因为如此,当美国媒体和互联网上关于这一猜想可能已被证明的消息传播开来之时,在整个数学界引起的轰动就可想而知了。


对此猜想作出重要贡献的是一位来自俄罗斯的中年数学家格里高利·佩雷尔曼(Grigory Perelman)。他是圣彼得堡斯捷克洛夫数学研究所的研究员,在过去10年中一直致力于微分几何与代数拓扑的研究。2002年11月,佩雷尔曼通过互联网公布了一个研究报告,声称证明了由美国数学家瑟斯顿(William P. Thurston)在25年前提出的有关三维流形的“几何化猜想”,而“庞加莱猜想”正是后者的一个特例。由于每隔数年就会冒出一个新的“证明”随后又被推翻,因此数学界对此类报告一向是非常谨慎的。四个月后佩雷尔曼又在网上公布了第二份报告,介绍了证明的更多细节。同时他也通过电子邮件与该领域的少数专家进行交流。

2003年4月,应华裔数学家田刚的邀请,佩雷尔曼在麻省理工学院作了三场演讲,结果大获成功。他似乎对所有问题和质疑都有准备--或者流利地应答,或者指出其属枝节末流。听过演讲的专业人士认为他的工作是极富创造性的,“即使证明有误,他也发展了一些工具和思想,足以导致对‘几何化猜想

本文留言

近期读者推荐